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Understanding how human physiological responses to stimuli vary across individuals is critical for the
fields of Affective Psychophysiology and Affective Computing. We approach this problem via network
analysis. By analysing individuals’ galvanic skin responses (GSRs) to a set of emotionally charged
images, we model each image as a network, in which nodes are individuals and two individuals are
linked if their GSRs to the given image are statistically similar. In this context, we evaluate several net-
work inference strategies. Then, we group (or cluster) images with similar network topologies, while
evaluating a number of clustering choices. We compare the resulting network-based partitions against the
known arousal/valence-based ‘ground truth’ partition of the image set (which is likely noisy). While our
network-based image partitions are statistically significantly similar to the ‘ground truth’ partition (mean-
ing that network analysis correctly captures the underlying signal in the data), the network-based parti-
tions yield insights that go beyond the ‘ground truth’ partition with respect to an independent criterion,
namely in terms of latent semantic analysis (meaning that our partitions are more semantically mean-
ingful than the ‘ground truth’ partition). Non-network-based approaches do not yield any such insights.
Thus, network analysis of affective physiological data appears to improve interpretation of the data. We
conclude by analysing in-depth a representative network-based image partition and discussing practical
applications of the corresponding results.

†This work is an extended version of our initial conference publication [1].

c© The authors 2014. Published by Oxford University Press. All rights reserved.
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1. Introduction

Networks (or graphs) allow for studying complex processes that emerge from the collective behaviour
of interconnected elements. Thus, networks can model real phenomena in many domains, e.g. social,
technological or biological systems [2–5]. We focus on network modelling of affective (or emotional)
physiological data in order to gain insights into how individuals physiologically respond to emotional
stimuli, thereby benefiting the fields of Affective Psychophysiology and Affective Computing. While
networks have already been used to evaluate emotional responses (e.g. [6]), to our knowledge, we are
the first to apply them to study affective physiological data. As we will show, network analysis improves
interpretation of the data compared with an alternative non-network-based approach.

1.1 Motivation and background

There is an inextricable coupling between physiology and emotions because one of the key evolutionary
functions of emotion is to facilitate rapid action in response to relevant environmental events [7]. Emo-
tions are constructs (or conceptual entities) that cannot be directly measured, but must be inferred from
measurable signals like physiology. Thus, understanding the link between emotions and physiology has
been an important endeavour in the field of Affective Psychophysiology for more than a century.

There is also an engineering side to complement the scientific endeavour of identifying the
physiological correlates of affect. The field of Affective Computing, a subfield of Human–Computer
Interaction, aims to build intelligent systems that respond to user emotions much like an actual human
would [8]. For example, a system can offer a hint if it detects that a user is confused or frustrated.
Considerable work has focused on developing automated approaches to detect emotions from observ-
able signals like facial expressions, speech patterns, etc. (e.g. [9,10]). Physiological-based approaches
for affect detection are attractive (e.g. [11–13]), as these signals are largely involuntary and thereby
less susceptible to social masking like facial expressions and speech. This once again raises the fun-
damental issue of understanding the relationship between affect and physiology, which is the focus of
this paper.

1.2 Related work

Over the last century, many attempts have been made to identify how different emotions are manifested
in physiological signals, such as the electrocardiogram (ECG), electromyogram (EMG) or galvanic skin
response (GSR) (see [14] for a review). While it was once claimed that unique discrete emotions (e.g.
fear, anger) are accompanied by distinct physiological patterns [15], meta-analyses and other syntheses
of the literature have failed to conclusively support this claim [14].

One reason for the difficulties in uncovering the emotion → physiological mapping is the consid-
erable individual variability in emotional responses (i.e. reactions to the same stimulus vary across
individuals). In affect detection, the most common approach to handle this variability has been
to simply ignore it (e.g. [12,16,17]). This is done by building person-dependent models that are
carefully calibrated to each individual. However, despite some advances [11,18], what is needed
are person-independent models that generalize to new individuals. The few efforts along this front
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have produced mixed results [19]. For example, emotion recognition accuracy of person-dependent
and person-independent models from three physiological signals (ECG, EMG and GSR) were com-
pared [13], and machine learning applied to detect seven emotions indicated that it was possible to
build person-dependent models with moderate classification accuracy, but accuracy went to zero with
person-independent modelling.

1.3 Our approach

To summarize, efforts to identify unique emotion-specific physiological responses have been largely
unsuccessful, likely due to considerable intra- and inter- individual variability in the signals. Unfortu-
nately, most (but not all) of the research have typically considered this variability to be sources of error
and something to be averaged over. In our view, however, this variability is far from random as there
might be structure in the noisy patterns of individual responding. Modelling this variability will provide
insights into the fundamental question of how individuals physiologically respond to emotions.

This paper adopts a novel approach to study interrelations among individuals by formulating the
problem from a network perspective. Since networks model relationships between objects, and since
physiological variability depends on the interrelations—both between humans and their physiologi-
cal states—by looking at the system of stimuli and individual responses to them from a structural (or
topological) point of view, networks can provide important insights on the problem of modelling and
understanding this variability.

To this end, we consider affective physiological responses of humans to a set of stimuli and
construct networks reflecting relations between individual responses. We then analyse and compare
these networks to investigate how inter-individual patterns of responses map onto the known ‘ground
truth’ about the stimuli. In addition to this, we provide a comprehensive analysis of the ways to con-
struct, compare and cluster networks, which allows us to examine relative effects of choosing different
methods and parameters. As a result, we develop an extensible framework for systematic analysis of
affective physiological data. Moreover, we demonstrate that network analysis of such data improves
interpretation of the data compared with an alternative, non-network-based approach. Finally, we anal-
yse in detail a representative network-based image partition and discuss practical applications of its
results.

Fig. 1. Overview of our four-step study. Each of the four steps is discussed in one of the four subsections of Section 2.
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2. Methods

Our study consists of four major steps (Fig. 1). First, we obtain affective physiological data
(Section 2.1). Secondly, we construct networks from these data using a series of network inference
strategies (Section 2.2). Thirdly, we use various clustering methods and combinations of their param-
eters to partition the set of networks based on their topological similarities (Section 2.3). Fourthly, we
conduct a thorough evaluation of the partitions produced by the different clustering strategies, and verify
both statistical and practical significance of our results (Section 2.4).

2.1 Data collection

During the experiment, 18 human subjects were presented with 89 emotionally charged images from the
International Affective Picture System (IAPS) [20–22]. The IAPS is a collection of over a 1000 images
depicting people, objects or events that have been selected on the basis of how they evoke valence
(unpleasant to pleasant) and arousal (sleepy to active) in large samples of viewers. Arousal and valence
are the two fundamental dimensions of affective responses [23].

The 89 images were selected to cover a 3 × 3 arousal–valence (arousal: low, medium, high; valence:
negative, neutral, positive) normative rating space with 10 images per each of the nine classes (one
class had only nine images due to error) (Fig. 2(a)). For example, the images in the positive valence
and high-arousal class were selected using the normative ratings above 6.0 for valence and above
5.5 for arousal (normative ratings ranged from 1 to 9). Selection of images proceeded in a three-step
process. In Step 1, the images were categorized into the nine classes of the 3 × 3 valence–arousal space
based on the normative IAPS ratings. In Step 2, the researchers then manually selected images from
each class to ensure that there was sufficient variability in content and minimal overlap across classes.
In Step 3, mean valence and arousal scores for the selected images in each class were analysed in
order to ensure that they were sufficiently different. For reproducibility of our study, IAPS identifiers
of the selected 89 images, along with their corresponding classes in the arousal–valence partition, are
presented in Appendix A.

(a) (b)

Fig. 2. Illustration of physiological data used in our study with respect to: (a) AV ‘ground truth’ partition of the image set and (b)
experimental setup. In (a), for each image, its IAPS arousal normative score was categorized as either ‘low’, ‘medium’ or ‘high’,
and its IAPS valence normative score was categorized as either ‘negative’, ‘neutral’ or ‘positive’. Based on this 3 × 3 AV space,
images were partitioned into nine classes.
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Henceforth, we refer to this nine-class image partition as the arousal/valence (AV ) ‘ground truth’
partition (or simply as the AV partition). Note that we intentionally use quotes when talking about the
AV partition, since the ‘ground truth’ is itself quite noisy. This is because the ‘ground truth’ was obtained
from a combination of theory (images were carefully selected to evoke particular responses; e.g. spider
to evoke fear, or surgery for disgust) and normative ratings of valence and arousal that accompany the
IAPS collection. These ratings reflect the average valence and arousal as subjectively reported by a
large sample of individuals (different from our 18 subjects) after viewing each image. Therefore, the
assignment of the images to the nine ‘ground truth’ classes in the AV partition is noisy, which is typical
for any emotion-eliciting stimulus.

For physiological recording, participants were equipped with ECG, EMG, respiration and GSR sen-
sors (Fig. 2(b)) [24]. The BIOPAC MP1501 system with AcqKnowledge software was used to acquire
the physiological signals at a sampling rate of 1000 Hz for all channels. Two electrodes were placed on
the wrists for collecting ECG. Two channels recorded EMG activity from two facial muscles regions
(zygomatic and corrugator, respectively). GSR was recorded from the index and middle finger of the
left hand, and a respiration band was strapped around the chest.

We exclusively focus on the GSR signal as an initial step to studying the viability and added-value
of the network-based approach to analysing affective psychophysiological data. The GSR was used in
lieu of the other signals due to the considerable research establishing a clear link between GSR and
physiological arousal; this link is less clear for the other signals (see [14] for a review). GSR tracks the
electrical conductivity of the skin based on variations in moisture caused by sweating. The basic idea
of GSR is that the sweat glands are controlled by the sympathetic nervous system (which modulates
affect related flight or fight responses), so variations in moisture that are picked up by the GSR signal
can reflect changes in physiological arousal. We note that even though here we focus exclusively on the
GSR signal, our study is easily extensible to any of the recorded signals.

Each subject viewed each image for 10 s, with responses being recorded at a rate of 1000 Hz. There
was a 6-s break between image presentations in order to allow the signals to return to baseline values.
A GSR signal of each subject to each image was obtained, resulting in 18 × 89 = 1602 signals. The
89 signals for each subject were first standardized (converted to z scores) within the subject and then
smoothed with a 0.3 Hz low-pass filter.

2.2 Network construction

We construct networks from the collected physiological response data as follows. For each image, we
create an unweighted, undirected network in which a node corresponds to a subject and an edge exists
between two nodes if GSR responses of the corresponding subjects are ‘similar enough’ with respect to
a given similarity measure. Thus, each network structurally captures how different subjects respond to
the same image as an initial step in modelling inter-individual variability.

To form a network, we need to choose: (1) a similarity measure for comparing GSR signals of two
nodes, (2) a method for dealing with (e.g. filtering in some way) the resulting pairwise node similarity
matrix and (3) a strategy for defining from this matrix edges between the nodes (Fig. 1). To obtain
representative results, we evaluate the effect of the choice of these network construction parameters on
our results. Namely, we test two similarity measures (Section 2.2.1). For each of the measures, we use
two different strategies for dealing with the resulting matrices (Section 2.2.2). Finally, for each matrix,
we define edges in the network in two ways (Section 2.2.3).

2.2.1 Signal similarity measures. We measure GSR similarity by using: (1) Pearson correlation (PC)
and (2) mutual information (MI). While PC measures linear relationships between signals, MI can
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capture more complex (non-linear) relationships between signals by relying on an information-theoretic
notion of similarity [25,26]. We normalize MI to take values between 0 and 1 [25].

2.2.2 Dealing with signal similarity matrices. For each image, we perform pairwise node compar-
ison of the corresponding responses in order to obtain an 18 × 18 signal similarity matrix. Then, we
either: (1) directly use this matrix to define edges (as described below) or (2) process this original matrix
using the network deconvolution method [27] into a filtered matrix and then use the filtered matrix to
define edges (as described below). The motivation for applying the network deconvolution method to
the original matrix is as follows [27]. When constructing an observed network from an unfiltered matrix
of pairwise node (i.e. subject) similarities (such as correlations), the resulting edges will likely include
numerous indirect dependencies owing to transitive effects of the similarities. For example, if there is
a strong dependency between subjects X and Y and between subjects Y and Z in the underlying true
network, high similarities will likely also be visible between subjects X and Z in the observed network,
thus inferring an edge from subjects X to node Z which might not actually exist in the true network.
Moreover, even if this edge did exist in the true network, owing to additional indirect relationships
between X and Z, the strength of this edge may be overestimated; consequently, this true edge could
be wrongly included into the observed network over some other true edge with higher initial strength
but no indirect relationships to boost its strength up. Hence, filtering the matrix of node similarities by
distinguishing between the convolved direct and indirect contributions could ensure that the resulting
observed network matches the true network better than the observed network resulting from the non-
filtered matrix of node similarities. As such, matrix filtering could lead to more meaningful results, and
this is exactly what we examine. We refer to networks directly constructed from the original signal sim-
ilarity matrices as unfiltered networks, and we refer to networks constructed from the filtered matrices
as filtered networks.

2.2.3 Defining edges. We define edges from a signal similarity matrix (unfiltered or filtered) as fol-
lows. We add an edge between two nodes if the similarity score between the corresponding subjects’
responses to the given image is above some threshold. We refer to the resulting networks as positive
networks. In addition, we add an edge between two nodes if the absolute value of the similarity score is
above some threshold. We refer to the resulting networks as positive–negative networks. Hence, in PC
positive–negative networks, both subjects whose responses are strongly positively correlated as well as
subjects whose responses are strongly negatively correlated are linked. Note that since MI values are
non-negative, positive–negative networks are constructed only with respect to PC.

To form a network (positive or positive–negative) from a signal similarity matrix (unfiltered or
filtered), we need to specify an edge threshold value. We aim to choose this value in a way that keeps
only statistically significant edges and provides a meaningful representation as well as interpretation of
the data [1]. Namely, for each image, we aim to construct a network that ideally links all 18 subjects, in
order to include into the network as much of information from the data as possible. At the same time, we
aim to construct a network that is not too dense, in order to mimic the sparse nature of many real-world
networks as well as avoid randomness in network topology [4].

We begin by focusing on PC positive networks (Section 2.2). We vary PC threshold from 0.5 to
0.9 in increments of 0.1 and further from 0.9 to 0.99 in finer increments of 0.01. We do not examine
thresholds below 0.5, as the majority of all possible edges would already be included into networks at
this threshold. For each examined threshold, we balance between the number of nodes included into
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networks and network density, as discussed above. Empirically, we find that PC threshold of 0.95 (with
p-value of below 10−7 [1]) results in the most appropriate networks, i.e. in networks that include many
nodes while still being sparse enough. Thus, we adopt 0.95 as the threshold for PC positive networks,
including ∼30% of all possible edges into all 89 PC positive networks combined. (Not all networks
necessarily have the same number of edges.) For a fair comparison, we adopt the same threshold for PC
positive–negative networks. Since the distribution of all possible PC scores and all possible MI scores
is somewhat different, for MI positive networks, we do not select the same threshold; instead, for a fair
comparison, we adopt MI threshold of 0.975, as this threshold also results in ∼30% of all possible edges
being included into MI positive networks.

2.2.4 Bottom line: network types. To summarize, we have six different types of networks: PC posi-
tive, PC positive–negative and MI positive, each with both an unfiltered and filtered version. For each of
the six types, we generate 89 networks, one for each of the 89 images. Each network models similarity
in responses between the 18 subjects and thus has 18 nodes. However, since isolated nodes (i.e. nodes
with no edges adjacent to them) do not contribute to the topology of the network, we remove such nodes.

2.3 Clustering of networks

After constructing the networks, we next ask whether networks corresponding to images of the same
AV ‘ground truth’ class (Section 2.1) are more ‘topologically similar’ than networks corresponding to
images from different classes. To answer this, we cluster the networks into non-overlapping groups
based purely on their topological similarities, without using any ‘ground truth’ knowledge about which
network (i.e. image) corresponds to which ‘ground truth’ class. In this way, we produce a network-based
partition of the images. Then, we can compare such a partition with the AV ‘ground truth’ partition
(Section 2.1), in order to determine whether the two partitions significantly overlap. A significant over-
lap would indicate that based solely on network topological similarity we can group together images
which group together according to the ‘ground truth’. (Note: we do not perform ‘graph clustering’ of
an individual network into groups (or communities) of nodes (or edges) [28,29].) Instead, we consider
each network as a separate ‘atomic’ object and perform ‘data clustering’ of a set of networks into groups
of ‘related’ networks.

To cluster a set of objects (i.e. images), we need to define: (1) a measure of distance (or equiv-
alently, similarity) between the objects, (2) a clustering method and (3) parameters of the method.
We comprehensively test multiple network-based (as well as non-network-based) distance mea-
sures (Section 2.3.1), clustering methods (Section 2.3.2) and variations of the methods’ parameters
(Section 2.3.2).

2.3.1 Distance measures. We use seven network similarity measures: (1) common edges, i.e. the
overlap of the networks’ edge sets, as measured by Jaccard index (|E1 ∩ E2|/|E1 ∪ E2|, where E1 and E2

are the two edge sets) [30]; (2) absolute difference of the networks’ average clustering coefficients [31];
(3) absolute difference of their average diameters (the average diameter of the network is the average
of shortest path lengths over all node pairs [31]); (4) PC of the networks’ degree distributions [4,31];
(5) PC of their clustering spectra (the clustering spectrum of a network is the distribution of average
clustering coefficients of nodes with a particular degree) [31]; (6) relative graphlet frequency distance
(RGF-distance) (which compares frequencies of all three- to five-node subgraphs, or graphlets, in two
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networks [32]) and (7) graphlet degree distribution agreement (GDD-agreement) (which generalizes the
degree distribution into a spectrum of GDDs [33]). We use GraphCrunch for all comparisons [31,34].

Importantly, we want to ensure that we can obtain a more precise image partition by clustering
network-based representations of the images via a network similarity measure than by clustering a
non-network representation of the image data via some statistical, non-network-based image similarity
measure. For this purpose, we define an additional non-network-based measure of similarity between
two images, called NON-distance, that is, based solely on the direct correlation of signal similarity
matrices constructed in Section 2.2. For details, see our previous work [1].

Thus, we consider the total of eight distance measures. For each, we construct matrices of pairwise
image distances and input these matrices into a clustering method, in order to group (separate) similar
(dissimilar) images.

2.3.2 Clustering methods and their parameters. To test how the choice of clustering method affects
a partition quality, we use two clustering methods: (1) hierarchical clustering (HIE) and (2) k-medoids
clustering (KM) [28]. Note that KM clustering is a modification of k-means clustering that requires using
actual data points (in our case, networks) as cluster centres, rather than allowing centres to be non-data
points, as k-means does. And since our clustering distance measures require centres to be data points,
using k-means is inappropriate, or in other words, KM needs to be used. We test various parameters
for the two clustering methods [1]: four linkages for HIE (single, complete, average and weighted [28])
and all possible values of the desired number of clusters, k, for both HIE and KM (k = 1, 2, . . . , 89).

All combinations of the two signal similarity measures (PC and MI), two ways to deal with signal
similarity matrices (using either the original unfiltered matrix or the filtered matrix), two ways to define
edges (positive and positive–negative), eight distance measures (seven network-based measures and
NON-distance) and two clustering methods (HIE and KM) lead to 96 different parameter combinations:
48 combinations for unfiltered networks and 48 combinations for filtered networks. Actually, since for
unfiltered networks, NON-distance produces the same distance matrix for PC positive networks and PC
positive–negative networks, and since it does so for both hierarchical and k-means clustering, the actual
number of different combinations for unfiltered networks is 46 instead of 48. Thus, in total, over both
unfiltered and filtered networks, there are 46 + 48 = 94 different parameter combinations. For each of
these combinations, we choose the ‘best’ partition over all combinations of clustering parameters (over
all possible choices of k and linkage for HIE, and over all possible choices of k for KM). By ‘best’, we
mean the most significant according to the criterion introduces in the following section.

2.4 Evaluating partition quality

Upon producing a partition of images, we evaluate the quality of the partition with respect to its overlap
with the ‘ground truth’ knowledge about the images. Namely, we evaluate a partition: (1) by comparing
it against the AV ‘ground truth’ partition and (2) according to its semantic meaning.

To compare two partitions, we use Adjusted for chance Information Distance (AID) measure
[26,35]. This measure uses notions of entropy and MI to determine the similarity between two par-
titions from an information-theoretic perspective. It quantifies how much knowing one of the partitions
reduces uncertainty about the other [26]. The lower the AID value, the more similar two partitions. AID
already incorporates ‘adjustment for chance’ that allows for comparing partitions of different cluster
sizes without bias [35]. As a consequence, AID gives a way to rank pairs of partitions based on their
similarities. This is very useful in our study, because it allows us to evaluate the fit of the AV ‘ground
truth’ partition to many different partitions resulting from the different clustering strategies. And by
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comparing multiple partitions to the AV partition, we can determine which one of them is better, i.e.
closer to the ‘ground truth’. We determine the statistical significance of our AID score between two
partitions empirically, as the percentage of 106 randomly generated partitions have the same or better
AID scores than our actual AID score [1]. This percentage is our p-value. If an AID score between some
partition and the AV ‘ground truth’ partition has a p-value below 0.01, we refer to that partition as ‘sta-
tistically significant’. For further analysis, among all 94 best partitions (corresponding to 94 different
parameter combinations), we focus only on those that are statistically significantly similar to the AV
partition with respect to AID.

In addition to comparing our ‘statistically significant’ partitions with the AV ‘ground truth’ parti-
tion, we also assess them using latent semantic analysis (LSA) [36]. LSA is a statistical technique that
computes the conceptual similarity of two texts (words, sentences or documents) by leveraging second-
order co-occurrence relationships from large text corpora. For each pair of our images, we derive LSA
similarities between high-level image names (e.g. kittens, garbage, spider) depicted in the images using
the online LSA tools (http://lsa.colorado.edu/). That is, we obtain an additional ‘ground truth’ data set
based purely on high-level semantic meanings of the images. We evaluate partition quality from the
LSA perspective by comparing intra- and inter-cluster LSA similarities within a partition using the
Wilcoxon rank-sum test [1]. We note that by using high-level labels to categorize each image, we rely
on somewhat primitive keywords of images (e.g. dog) instead of more informative descriptions (e.g.
dog stretching out in the lawn gazing at mail man). We do this because our primary goal is to capture
primitive semantic influences on physiological early responding triggered by the ‘gist’ of the image
rather than more complex cognitive appraisals of the information depicted in each image.

3. Results and discussion

We first discuss results for unfiltered networks (Section 3.1), followed by results for filtered networks
(Section 3.2), in order to evaluate the effect of filtering on the quality of the results (Section 3.3). Also,
we discuss results and implications of a representative network-based partition (Section 3.4).

3.1 Results for unfiltered networks

Here, we summarize topological properties of unfiltered networks (Section 3.1.1) as well as the quality
of their partitions (Section 3.1.2). (More detailed results are also available [1].)

Fig. 3. Edge intersections between: (a) the three network types (PC positive, PC positive–negative and MI positive) for unfiltered
networks, (b) the three network types for filtered networks and (c) unfiltered and filtered networks, ignoring the network type.

http://lsa.colorado.edu/
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3.1.1 Network topological trends. We study several topological properties of networks of different
types (Section 2.2.4), such as network size, size of the largest connected component, maximum diame-
ter, average clustering coefficient and average degree [1]. While 69% of all edges in unfiltered networks
are common to all three network types (Fig. 3(a)), there is still a notable variability in the topology of
different networks types, which could affect network-based clustering of images. For example, even
though topological properties are similar for PC positive and PC positive–negative networks (except
that PC positive networks are slightly denser), PC networks have more (non-isolated) nodes than MI
positive networks, while MI positive networks tend to be denser than PC networks. Moreover, PC net-
works typically contain multiple connected components, while in almost each MI network, all of the
nodes are contained within the network’s largest (and thus only) connected component. Networks of dif-
ferent types have similar trends only with respect to their diameters and average clustering coefficients:
diameters of all networks are relatively small and their clustering coefficients are relatively high. This is
encouraging to see in our data, as the observed behaviour is typical for many real-world networks [4].

3.1.2 Quality of partitions. After we construct networks, we use them to partition the image set
(Section 2.3). We focus only on ‘statistically significant’ partitions (Section 2.4). There are 17 such
partitions for unfiltered networks, out of 46 possible partitions (Table 1). When we evaluate the effect
of different network construction and clustering parameters on the partition quality, we find that the
choice of the parameters affects the resulting partitions. For example, we find that PC is generally
better (i.e. it produces more ‘statistically significant’ partitions) than MI, with PC positive–negative
networks demonstrating the best results. Regarding the choice of distance measure, common edges
and the difference of average clustering coefficients are superior, contrary to our expectation that more
constraining measures of network similarity, such as GDD-agreement and RGF-distance, would be the
best. Importantly, we find that there is no single choice for any of the parameters that works for all
combinations of the other parameters. This is especially true for HIE. This implies that we still have to
consider all ‘statistically significant’ partitions and choose the best according to a desired criterion.

The fact that we are able to construct ‘statistically significant’ partitions using a network-based
approach implies that differences in physiological response patterns of subjects to various images
captured by our approach are meaningful with respect to the AV ‘ground truth’ partition. Also, the
network-based partitions tend to fit the AV partition better than the non-network-based partitions
(Table 1), indicating that network analysis indeed can improve interpretation of the data.

To further evaluate the quality of the ‘statistically significant’ partitions, we measure their semantic
meaningfulness using LSA (Section 2.4). Then, we ask whether our network-based partitions outper-
form in terms of LSA: (1) the AV partition and (2) the non-network-based partitions. If so, that would
mean that: (1) even though our partitions do not perfectly match the AV partition (but are still statis-
tically significantly similar to it), they are more semantically meaningful (according to LSA) and (2)
they are more meaningful than the non-network-based analysis of the same physiological data that we
employed in our study. That is, this would further confirm the validity of our network analysis strategy
in the context of affective physiological data.

Indeed, this is what we observe (Table 1). While the LSA p-value for the AV partition is 0.261 (and
thus non-significant), five of our partitions (four for HIE and one for KM) are semantically meaningful
in terms of LSA. Importantly, all of them are network based. Even though non-network-based partitions
are ‘statistically significant’, none of them is semantically meaningful at the same time. This confirms
that network analysis can improve interpretation of physiological data by capturing both AV ‘ground
truth’ and semantics.
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3.2 Results for filtered networks

Next, we show topological (Section 3.2.1) and partition quality (Section 3.2.2) results for filtered net-
works.

3.2.1 Network topological trends. We find that the topology of filtered networks is extremely
sensitive to the choice of network construction strategy: only 6% of all edges in filtered networks
(compared with 69% for unfiltered networks) are shared among the three network types (Fig. 3(b)).
Importantly, even within a single network type, there is a notable variability in most of the analysed
network topological properties, which could have drastic effects on network-based clustering.

3.2.2 Quality of partitions. There are 21 ‘statistically significant’ partitions of filtered networks, out
of 48 possible partitions (Table 2). When we evaluate the effect of different network construction and
clustering parameters on the partition quality, just as for unfiltered networks, we again find that the
choice of the parameters affects the resulting partitions. But unlike for unfiltered networks, we find
that more topologically constraining network distance measures (Section 2.3.1) are now superior, as we
would expect: RGF-distance results in ‘statistically significant’ partitions for all three network types in
case of HIE, and GDD-agreement does the same for all three network types in case of KM.

Although it is possible to obtain ‘statistically significant’ partitions from filtered networks using the
NON-distance measure, importantly, AID scores of these partitions are worse than those of network-
based partitions (Table 2). That is, the network-based partitions again tend to fit the AV partition better
than the non-network-based partitions.

When we evaluate the ‘statistically significant’ partitions in terms of LSA, we find that they are
more similar than AV ‘ground truth’ partition (Table 2): three of the partitions are semantically mean-
ingful with p-value of 0.01 (recall that the LSA p-value for the AV ‘ground truth’ partition is 0.261 and
is thus non-significant). Importantly, just as for unfiltered networks, none of the non-network-based par-
titions for filtered networks is semantically meaningful at the same time. However, unlike for unfiltered
networks, we note that GDD-agreement, which we would expect to be superior to all other distance
measures, is indeed superior for filtered networks, as it is the only measure that yields to semantically
meaningful partitions for both clustering methods (HIE and KM) as well as for both signal similarity
measures (PC and MI) (Table 2).

In summary, just as for unfiltered networks, clustering of filtered networks produces partitions that
are statistically significantly similar to the AV ‘ground truth’ partition while fitting more closely to
LSA than the AV ‘ground truth’ partition. Importantly, network-based partitions again lead to better
results than non-network-based partitions, further confirming that network analysis can improve the
interpretation of physiological data.

3.3 Comparison of results for unfiltered and filtered networks

Here, we contrast topological properties between unfiltered and filtered networks (Section 3.3.1). Then,
we ask which of the two should be used from a practical point of view (Section 3.3.2).

3.3.1 Network topological trends. Even though we designed our study so that all network construc-
tion strategies result in the same average network density (Section 2.2), unfiltered and filtered networks
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(a) (b)

Fig. 4. Illustration of differences in topological properties of unfiltered and filtered networks. We plot the distribution of edge
counts over MI positive networks with the given number of nodes (as shown on x-axis), constructed from: (a) unfiltered and (b)
filtered signal similarity matrices. The larger the number of networks with the given property (i.e. the given number of nodes and
edges), the larger the size of the corresponding circle. ‘×’ and ‘+’ marks in the panels correspond to theoretical minimum and
maximum values of the illustrated properties, respectively.

differ in their topology. To start with, while the three network types share the majority of all edges
in unfiltered networks (Fig. 3(a)), they share only a small portion of all edges in filtered networks
(Fig. 3(b)). Also, when we ignore the network types and look at all edges in both unfiltered and filtered
networks, only 44% of the edges are common to the two (Fig. 3(c)).

Going beyond simply counting the edges in the intersection between different network types, in
general, unfiltered and filtered networks also have different topological properties. Namely, they dif-
fer in terms of network sizes (Fig. 3). Also, filtered networks have smaller clustering coefficients (or,
intuitively, fewer triangles) than unfiltered networks. This could be because the network deconvolution
filtering method is likely to decrease the effect of ‘spurious’ pairwise node similarities [27], and thus,
potential edges contributing to indirect paths (such as the indirect path between two nodes in a triangle)
could be weighted lower and consequently removed from the network.

3.3.2 Unfiltered vs. filtered networks: which one to use from practical point of view? Clearly, the
network deconvolution method alters the topology of resulting filtered networks compared the topol-
ogy of unfiltered networks. Still, both unfiltered and filtered networks produce statistically significant
and semantically meaningful results (Tables 1 and 2, respectively). Yet, results that are significant and
meaningful for unfiltered networks are not necessarily significant and meaningful for filtered networks
(Table 1), and vice versa (Table 2). Thus, the question is which one to use: unfiltered or filtered net-
works? To answer this, we first contrast the two by measuring which one shows significant correlation
of their network-based image distances with ‘ground truth’ image distances, before partitioning the
images based on their network-based distances (this allows for a direct comparison of unfiltered and
filtered networks without being confounded by clustering). Then, we contrast unfiltered and filtered
networks with respect to the quality of their partitions produced based on the network-based image
distances.
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Correlation with ‘ground truth’ image distances. We directly correlate each of (non-)network-based
image distance matrices with each of four ‘ground truth’ image distance matrices: (1) arousal (com-
paring IAPS normative arousal scores of the images), (2) valence (comparing IAPS normative valence
scores of the images), (3) arousal–valence (comparing the combination of the previous two scores;
Fig. 2(a)) and (4) LSA (comparing semantic similarity of the images). We do this via Mantel test, which
is convenient for computing the significance of correlation between two distance matrices of related
objects after adjusting for item-dependence [37].

We find that NON-distance, the non-network-based approach, captures (i.e. significantly correlates
with) arousal, but nothing else. And capturing arousal is expected for GSR as repeatedly documented
in the literature (e.g. [14,38]). Thus, the non-network-based approach does not seem to uncover any
interesting (i.e. unexpected) signal from the data. Network-based approaches, on the other hand, capture
all four types of the ‘ground truth’ image distance matrices. That is, network-based approaches go
beyond simply capturing the expected arousal—they also significantly correlate with distance matrices
of valence, arousal–valence and semantics (LSA). Hence, we again confirm that network analysis of the
data has important practical applications, as it can capture interesting results that can easily be missed
by non-network-based analysis.

Going back to determining which one is more efficient, unfiltered or filtered networks, we find that
the latter outperform (in terms of the significance of correlations) the former for three out of the four
‘ground truth’ image distance matrices: arousal, valence and LSA. While both types of networks capture
(i.e. significantly correlate with) arousal and LSA, only unfiltered networks capture arousal–valence,
and only filtered networks capture valence. This suggests that perhaps the most defensible approach
is to consider both filtered and unfiltered networks, though they may be added advantages to filtered
networks as discussed below.

Quality of partitions. Unfiltered and filtered networks show comparable performance in terms of
partition quality (Tables 1 and 2), although filtering leads to a slightly larger number of statistically
significant partitions (21 for filtered networks vs. 17 for unfiltered networks) as well as semantically
meaningful partitions (7 for filtered networks vs. 5 for unfiltered networks). However, the partition with
the lowest AID score was obtained for a partition of unfiltered networks (partition 1 in Table 1).

We find that topologically more constraining network distance measures, such as GDD-agreement
and RGF-distance, which we would expect to be superior, are indeed superior for filtered networks. For
unfiltered networks, only one ‘statistically significant’ partition is obtained by using these measures,
while there are eight such partitions for filtered networks (three of which are also semantically mean-
ingful). Moreover, for filtered networks, both the partition with the lowest AID score for HIE, as well
as the partition with the lowest AID score for KM (partitions 1 and 12 in Table 2, respectively) result
from GDD-agreement. And since we expect GDD-agreement and RGF-distance to work better than
their topologically simpler counterparts, these results might imply that filtered networks are preferred,
at least from this perspective.

We also study the robustness of our approach to network filtering. That is, we check whether the
same combinations of network construction and clustering parameters that result in ‘statistically sig-
nificant’ partitions for unfiltered networks also result in ‘statistically significant’ partitions for filtered
matrices (the last two columns of Table 1), and vice versa (the last two columns of Table 2). In this
context, we find that HIE is less robust than KM. Specifically, for HIE, only 1 out of 8 ‘statistically sig-
nificant’ unfiltered partitions remains ‘statistically significant’ after filtering (Table 1), and only 3 out of
11 ‘statistically significant’ filtered partitions remain statistically significant without filtering (Table 2).
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On the other hand, for KM, these results are 6 out of 9 and 6 out of 10, respectively. Importantly, there
is no partition that is both ‘statistically significant’ and semantically meaningful both with and without
filtering.

Unfiltered vs. filtered networks: summary. Our results suggest that filtering of similarity matrices
can significantly affect the topology of the resulting networks and the quality of the resulting par-
titions. Importantly, network construction and clustering strategies that work well for unfiltered net-
works do not necessarily work well for filtered network (and vice versa). Although filtering does
not drastically improve the quality of the image partitions, it leads to a slightly larger number of
‘statistically significant’ and semantically meaningful partitions. Filtered networks also correlate more
significantly than unfiltered networks with three out of four sets of ‘ground truth’ image distances. Fur-
thermore, filtering works better in combination with more topologically constraining distance measures,
as we would expect, which may imply that filtered networks have less noise compared with unfiltered
networks.

3.4 In-depth analysis and interpretation of a representative network-based image partition

We now focus on a representative ‘statistically significant’ and semantically meaningful network-based
partition for further in-depth analysis. In particular, we select partition 10 from Table 1. We choose this
partition out of all partitions from Tables 1 and 2 as it mimics the closest the AV ‘ground truth’ partition
in terms of the number of clusters (both partitions have nine clusters) as well as cluster sizes. As such,
it enables a fair interpretation of its results with respect to the AV ‘ground truth’.

To analyse this partition, we compute for each cluster its average valence score as well as its average
arousal score over all images in the cluster, after assigning each image the score of 0, 0.5 or 1 for
its low, medium or high arousal as well as for negative, neutral and positive valence, respectively.
Figure 5 depicts these averages for each cluster on a two-dimensional arousal–valence space, while
Fig. 6 visualizes the membership of images in each cluster. Ideally, we would hope for considerable
similarities in average arousal–valence scores within each cluster and considerable differences in the
scores across the clusters, as this would validate the correctness of our approach.

Indeed, this is what we observe (Figs 5 and 6). Clusters 2 and 7 contain images with negative
valence, such as garbage, vomit, thrash in C2 and a cockroach, surgery, and a gun in C7. They also
contain images with neutral valence, such as a mask and a dental exam in C2 and an electric outlet and
men in C7. In general, mean valence scores for these clusters are highly similar (0.28 for C2 and 0.25
for C7), but these clusters can be distinguished via mean arousal values (0.33 for C2 and 0.5 for C7),
with C7 containing images that are more emotionally arousing than C2. With one exception, neither
cluster contains any positively valenced images.

Conversely, clusters C8 and C9 contain mostly positive-valenced with occasional neutral-valenced
images, but they rarely contain negatively valenced images; mean valence scores are 0.64 and 0.67 for
C8 and C8, respectively. Example images in these clusters include a couple, a watermelon, a tomato in
C8 and a rabbit and surfers in C9. Once again, arousal discriminates these clusters, with images in C9
(e.g. surfers) being more arousing than images in C8 (e.g. tomato); mean arousal score in C9 of 0.50 is
double that in C8 of 0.23.

Clusters C1 and C5 occupy similar positions in the arousal–valence space with mean arousal scores
of 0.71 and 0.73 and mean valence scores of 0.62 and 0.59, respectively. Sample images in these clusters
include fireworks, money, gold and clowns (which are arousing and have positive valence) along with
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surgery, a roach on a slice of pizza and a starving child (which are arousing and have negative valence).
Therefore, clusters C1 and C5 seem to capture physiological responses to arousal rather than valence.

Conversely, clusters C4 and C6 occupy similar positions in the arousal–valence space, but there
are some marked differences among these clusters. Most notable is the fact that C4 contains an equal
number of positively valenced (e.g. a butterfly or a baby) and negatively valenced images (e.g. a crying
family or skulls), which leads to a mean neutral-valence profile (with score of 0.44). On the other hand,
although C6 has a similar mean valence score of 0.5, it mainly contains neutral images (e.g. a bicyclist,
cheerleaders or a pig), rather than a mix of positively- and negatively valenced images. Additionally,
even though average arousal values for these clusters are also similar, C6 is slightly more arousing (with
mean arousal score of 0.39) than C4 (with mean arousal score of 0.28).

Finally, while cluster C3 is consistent with average neutral valence (with average valence of 0.44,
containing neutral images of, e.g. a building, an actor, a man or a skyscraper), this cluster is more
interesting in terms of the variability in arousal that it captures, since it contains highly arousing (e.g.
erotic female), medium arousing (e.g. actor) and low arousing (e.g. a man) images, resulting in average
medium–high arousal (with score of 0.61).

A detailed analysis of this exemplary partition unveils some interesting insights pertaining to phys-
iological responses to affective stimuli. An interesting observation is that the physiological responses
seem to compress the arousal–valence space rather than being uniformly distributed across the space
(Fig. 5). This is because the clusters rarely adhere to the expected AV ‘ground truth’ in that there is rarely
a cluster with images that perfectly map onto the AV ‘ground truth’ image classes. For example, there is

Fig. 5. Arousal–valence scores of different clusters in the representative network-based partition, where the scores are averaged
over all images in the given cluster.
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Fig. 6. Membership of the 89 images in different clusters of the representative network-based partition. Each image is depicted
as a circle whose colour corresponds to its IAPS normative valence score (white—negative valence, light gray—neutral valence
or dark gray—positive valence) and whose size corresponds to its IAPS normative arousal score (small—low arousal, medium—
medium arousal or large—high arousal).

no high-arousal positive-valence cluster in our partition. Instead, the clusters contain blends of images
that are mostly similar in valence but differ in arousal (e.g. C6), that are mostly similar in arousal but
differ in valence (e.g. C5, C1), or that differ along both dimensions (e.g. C4). Given that our networks
are created based on similarity of participants’ physiological responses to images, our results suggest
that inter-individual physiological responding does not neatly align with the expected AV ‘ground truth’,
but is not entirely random either, as evident from the observed patterns in our clusters. We suspect that
the ‘meaning’ of the images might also play a role in how individuals physiologically respond to them.
Hence, both the affective dimension (i.e. valence and arousal) and the cognitive dimension (i.e. mean-
ing) might be needed to explain variability in physiological responding. This is particularly encouraging
since we have shown that our network-based approach captures both of these aspects, since it signifi-
cantly aligns with both the AV ‘ground truth’ and LSA (meaning) partitions.

4. Conclusions

We use a network approach to study affective physiological data. Namely, we model images as networks
and group images with similar network topologies. We perform a systematic analysis of the effect of
different network construction and clustering approaches, concluding that the each choice can affect the
results. For network inference and clustering communities, this highlights the importance of considering
various strategies. Nonetheless, we show that via network analysis we can construct image partitions
that are significantly similar to the AV ‘ground truth’ partition, while at the same time yield deeper
insights by also being sensitive to semantics as estimated by LSA. Importantly, we show that such a
result cannot be obtained via a non-network-based analysis of the same data. Thus, viewing affective
physiological data through a network lens can yield deeper insights by improving analysis of the data.
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We introduce a framework for systematic network analysis of human physiological responses. There
are several future extensions of our research. A next step could be to identify communities of individ-
uals with respect to their (dis)similarities in physiological responses to affective stimuli and to investi-
gate whether these communities can be discriminated on the basis of trait-based individual differences
(e.g. personality factors, distress tolerance, generalized anxiety, etc.). Also, while our data are based
on 18 subjects, studying more subjects would make the results more generalizable. While we construct
image networks modelling similarities between responses of different individuals to a given image,
one can also construct subject networks, modelling similarities between responses of a given subject
to different images, which could give complementary insights. Finally, while we focus on GSR sig-
nals, our framework can be applied to other signals, e.g. ECG or EMG, which would allow to study
relationships between different physiological channels. In this context, the different signals could be
studied individually from network perspective and then their results could be integrated for a more
comprehensive understanding, or the networks corresponding to the different signals could be integrated
first, prior to any network analysis; how exactly this should be done is the subject of future research,
as it falls under the umbrella of the field of heterogeneous (network) data analysis, which is somewhat
in its infancy. All of the above future extensions of our current work could lead to the ultimate goal of
understanding how different emotions are manifested in physiological signals both within and across
individuals.
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6. Mitrović, M., Paltoglou, G. & Tadić, B. (2010) Networks and emotion-driven user communities at

popular blogs. Eur. Phys. J. B-Condens. Matter Complex Syst., 77, 597–609.
7. Izard, C. (2010) The many meanings/aspects of emotion: definitions, functions, activation, and regulation.

Emotion Rev., 2, 363–370.
8. Picard, R. (1997) Affective Computing. Cambridge, MA: MIT Press.
9. Calvo, R. A. & D’Mello, S. K. (2010) Affect detection: an interdisciplinary review of models, methods,

and their applications. IEEE Trans. Affect. Comput., 1, 18–37.
10. Zeng, Z., Pantic, M., Roisman, G. & Huang, T. (2009) A survey of affect recognition methods: audio,

visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell., 31, 39–58.
11. Picard, R., Vyzas, E. & Healey, J. (2001) Toward machine emotional intelligence: analysis of affective

physiological state. IEEE Trans. Pattern Anal. Mach. Intell., 23, 1175–1191.



www.manaraa.com

PHYSIOLOGICAL NETWORKS 635

12. Chanel, G., Kronegg, J., Grandjean, D. & Pun, T. (2006) Emotion assessment: Arousal evaluation using
EEG’s and peripheral physiological signals, Multimedia Content Representation, Classification and Security
(B. Gunsel, A. Jain, A. M. Teklap & B. Sankur eds). Lecture Notes in Computer Science. Heidelberg,
Berlin: Springer, vol. 4105, pp. 530–537.

13. AlZoubi, O., D’Mello, S. & Calvo, R. (2012) Detecting naturalistic expressions of nonbasic affect using
physiological signals. Affect. Comput., 3, 298–310.

14. Larsen, J., Berntson, G., Poehlmann, K., Ito, T. & Cacioppo, J. (2008) The Psychophysiology of Emo-
tion. New York, NY: The Guilford Press, pp. 180–195.

15. Ekman, P. (1992) An argument for basic emotions. Cogn. Emotion, 6, 169–200.
16. Herbelin, B., Benzaki, P., Riquier, F., Renault, O. & Thalmann, D. (2004) Using physiological mea-

sures for emotional assessment: a computer-aided tool for cognitive and behavioral therapy. Int. J. Disabil.
Hum. Dev., 4, 269–277.

17. Liu, C., Agrawal, P., Sarkar, N. & Chen, S. (2009) Dynamic difficulty adjustment in com-
puter games through real-time anxiety-based affective feedback. Int. J. Hum.-Comput. Interact., 25,
506–529.

18. van der Zwaag, M., Janssen, J. & Westerink, J. (2012) Directing physiology and mood through music:
validation of an affective music player. IEEE Trans. Affect. Comput., 4, 57–68.

19. Kim, K., Bang, S. & Kim, S. (2004) Emotion recognition system using short-term monitoring of physiolog-
ical signals. Med. Biol. Eng. Comput., 42, 419–427.

20. Lang, P. J., Bradley, M. M. & Cuthbert, B. N. (2008) International affective picture system (IAPS):
affective ratings of pictures and instruction manual. Technical Report A-8.
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Appendix A. IAPS identifiers

Nine classes of the AV ‘ground truth’ partition, illustrated in Fig. 2(a), contain images with the following
IAPS identifiers: (1) negative valence, low arousal: 2039, 2104, 2440, 2722, 5130, 7040, 9260, 9291,
9331, 9390; (2) negative valence, medium arousal: 1111, 1270, 2095, 2456, 3301, 6241, 9005, 9320,
9440, 9831; (3) negative valence, high arousal: 1050, 1205, 2730, 3000, 3212, 3213, 6520, 7380, 9075;
(4) neutral valence, low arousal: 2190, 2397, 2499, 2720, 5875, 6150, 7041, 7255, 7287, 9700; (5)
neutral valence, medium arousal: 1122, 1350, 2034, 2752, 2770, 2780, 7079, 9469, 9582, 9594; (6)
neutral valence, high arousal: 1113, 1302, 1726, 1931, 3211, 3302, 4008, 4604, 7640, 9230; (7) positive
valence, low arousal: 1605, 1610, 1620, 2000, 2370, 2501, 5200, 5760, 5811, 7325; (8) positive valence,
medium arousal: 1463, 1540, 1630, 1920, 2071, 2092, 2345, 2352, 8205, 8350 and (9) positive valence,
high arousal: 2208, 2347, 4180, 4693, 5480, 8179, 8206, 8496, 8500, 8502.
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